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SECTION I

INTRODUCTION

The objective of the research effort reported herein was to develop, via

the Wiener-Hopf (W-H) approach, an optimal closed-loop solution for digital

control of continuous plants using a continuous cost function. The impor-

tance of the problem class resides in two facts:

* Solution consists of two parts

- optimal discrete control law
- optimal continuous data hold

* Use of a continuous cost function assures account-
ability for the inter-sample behavior of the continuous
plant response.

This is worthy of further elaboration. The use of a continuous cost

function in conjunction with a continuous plant model yields a control law

that is optimal at all instants in time. However, the only constraint placed

on the closed-loop system response is at the sampling instances when: a dis-

crete cost function is employed. The "inter-sample" behavior of the con-

tinuous plant response can be very unsatisfactory. This is especially so if

the data rate is low and the open-loop plant contains lightly damped modes.

Also, when a discrete cost function is minimized, the data hold (the coupler

between the computer and the control actuators) is specified arbitrarily by

the designer (more often than not, a zero-order data hold is utilized). On

the other hand, if a continuous cost function is minimized via the Wiener-

Hopf approach, the optimal solution specifies both the control law and the

optimal form of the coupler.

As will be shown in Section IV, the combined coupler-control law problem

yields a Wiener-Hopf equation that is more formidable than its discrete or

continuous counterparts. Therefore, it is worthwhile to comment on the

issues involved in pursuing a solution using this approach.

The advantages of using modern matrix Wiener-Hopf minimization procedures

are not widely appreciated in today's control community. The primary reason

for this is that many experienced scientists and engineers have been alienated

TR-1 125-1 1
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by the difficulty in applying the spectral factorization solution method

which Wiener used (Ref. i). Very few optimal control practitioners are

cognizant of the fact that Wiener-Hopf equations can be solved by a direct

solution technique which makes spectral factorization unnecessary (Refs. 2

and 3) and uses mathematics no more difficult than partial fraction expan-

sions. Moreover, the method handles the multi-controller cases as well as

unstable, nonminiimm phase plants. We believe that increased awareness of

the basic and simple methods available for solving Wiener-Hopf equations

can increase modern control engineering productivity and will encourage a

more integrated use of time domain and frequency domain techniques for

problem solution.

The technical development proceeds in the sections which follow. Sec-

tion II reviews the W-H method for solving the continuous regulator problem.

This is not strictly necessary since the basic solution principles for the

regulator are contained in Ref. 3. Hovever, a clear understanding of the

manner in which the direct method works will make the solution method used

in the optimal coupler problem easier to follow. Moreover, a review of the

regulator case affords the opportunity to make clear that the W-H approach

provides a unifying framewtork wherein no modifications to the basic approach

are required in order to treat singular cases. In particular, the "bulleted"

items in the abstract will be clarified using a series of numerically tract-

able examples.

Section III deals with the optimal linear continuous stochastic control

problem via the Wiener-Hopf formalation. It is necessary to treat this case

because there is no established literature on solution of these optimization

problems by means of Wiener-Hopf techniques. First, the time domain form

of the IQG optimal stochastic control problem is treated using frequency

domain methods. It is shown that the steady-state gains of the Kalman filter

can be found using the W-H approach and linear solution methods. That is,

it is not necessary to solve a nonlinear Riccati equation. Next, an alter-

native W-H formulation is postulated which does not make use of the separa-

bility principle. This leads to a rather interesting formulation in that

two spectral matrices are involved. One is recognizable as being the regulator

spectral matrix, while the other is recognized as the spectral matrix associated

j TR-1125-1 2
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with the filter/observer problem. It is shown that this W-H formulation

survives, without singularity, the limiting condition wherein the measure-

ment :,oise vector is set identically equal to zero. This yields the optimal

observer solution without the necessity of resorting to limiting forms or

special partitioning (fo" example, Refs. 4 and 5).

Section IV treats the optimal coupler prob1.-m using an extension of the

second approach discussed in Section III (i.e., the formulation which does

not make use of the separability principle). Again, there will be two spec-

tral matrices which appear in the W-H equation; the "regulator" spectral

matrix remains a function of the complex frequency variable s, but now the

"filter observer" spectral matrix will depend on the delay operator z = esT.

It must be noted that the situation with respect to the design of a

digital controller using a continuous cost function will suffer the same

shortcomings presently associated with continuous regulator design. That

is, questions pertaining to the selection of the Q's and R's of the regulator

weighting matrices (so as to produce designs which are not only "optimal"

but "satisfactory" as well) will obviously persist for the optimal coupler

problem. In this regard it is hoped that the examples presented herein

(which emphasize the use of non-diagonal Q and R, R < 0, etc.) will encourage

optimal control practitioners to ease self-imposed restrictions placed on

the weighting matrices.

TR-1 125-1
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SEC=N 11

LINEAR RGULATOR PROBLEM

The open-loop plant model used throughout the paper will be

x = Fx+Gu

X(s) = [Is - F] GU + [Is - F]1 x(o) (1)

= AU + Bx(o)

Assuming a control law of the form

u = - (2)

results in the closed-loop configuration shown in Fig. 1. (K is not

restricted to being only a gain matrix.) The continuous cost function:

1 (c+Jo

- 2nJ c-J (x. + U dRU) as (3)

x = x'(-s) * .= u'(-s)

Is minimized by taking a variation on U such that

U = U0 + ).U1  (4)

where U0 is the optimal control and U1 is any physically realizable (exists

for t z 0) but arbitrary variation. The first variation gives a necessary

condition for an optinum (refer to Ref. 3 for the details) as:

TR-1125-1 4
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X(O) -B

Figure 1. Closed-Loop Regulator

JC 2nj J cjo U1 . (s) ds

= fu(t) ,(t) dt = 0 (5)

where

[R + A.qA]Uo + A.01 x(O) (6)

Since u'(t) exists for t a 0, a sufficient condition for satisfying Eq. 51

is that W(t) exists only for t < 0; hence, the product u;(t) w(t) is iden-

tically zero.

The second variation,

1= UI.[R + A*)A]U I ds (7)Jd 2 yj' fJ00j

can then be investigated to see if the extremm obtained is truly a minimum

(Jd > O) or a maximum (Jd < O). Note that c in Eq. 7 is not necessarily the

TR-1125-1
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since

X = [B + AW] x(O) (13)

will work just as well. In fact, Eq. 13 persists even in the singular cases

where the K matrix has infinite entries.

What are the candidate poles for U0? These are picked from (Refs. 2, 3):

P-I
det[R + A .QA] a (Dr) AL (14)

where P is the number of controllers, D represents the open-loop poles, and

A represents the closed-loop poles.

What are the candidate zeros of U0? These are unknown. Therefore, one

simply specifies polynomials with unknown coefficients. The number of

unknown coefficients is equal to the number of "positive time" poles which

must be cancelled. More precise details are available in Refs. 2 and 3; our

thrust here is to demonstrate how the simple principle of positive pole

cancellation yields the solution without the need to factorize R + A*QA.

A. SINGLE CONTROL POINT EXAMPLE

Let

x = ~x + 3u

so that

X(s) 3 3U(s) + I x(O) = AU + Bx(O)
s-2 s-2

Notice that the unstable open-loop pole exists for a > 2. Suppose R = 1,

Q = -1/3 (Q < 0), then the W-H equation

TR-1125-1 7
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[R+A.-A]UO + A.QPX(O)

1 + X-1/3) 3 U
S 1+ (- -2) 5 2 1UO

43(-I/3) X
+(-8-2) X

or

-2 + 4O 1 x(0) = LUO -x(O)
s+4-, -s 2 +4 DD DD

Since det[R + AQA] = (-s + 1)(s + I), the optimal closed-loop pole is at

s = -1. Let U0 = 9/A= E/(s + I) and substitute into Eq. 15:

(-s + 1)(s + I) I xO = (16)
-s 2 + 4 s + 1 -S2 + 4

Only one positive time Pnction pole (s - 2) survives in Eq. 16; therefore,

only one unknown coefficient is needed:

(-s + 1)aO - x(O)

(_s2 + 4) T

The numerator must contain (s - 2); therefore, the numerator equals zero

when s = 2.

(-s + 1)aO s=2 x(O) a = -x(o)

TR-1125-1
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Thus

U0 = wx(O) = - (O) (17a)s+1

= x(o)(r)=-8--2 a < 2 (17b:)
-s-2 J a<

K = lira -sW(s) = 1 (17c)

X = [B + AW]x(O)

I + 3 ~ )
- 2 [J s.. - (7+7] x (0) s x (0) (17d)

Evaluating the first variation

c+jO-

J 2= J U1 **(s) ds

1 c+j- 1

0 c < min -2, -1r

To see that Jc =0 , consider any realizable U1 (not necessarily stable) that

exists for a > a,. The UI* exists for a < -a, and the c selected is the

minimum of -2 or -a,. This is sketched in Fig. 2. Closing the contour to

the left using c < min a1,-2 encloses no poles. The summation of the residue

is zero, and the value of the first variation is identically zero. Consider

next the second variation:

TR-I 125-1 9
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>" 1 of

<"

Pol Pole

Figure 2. s-Plane Domains

1 (c+J0

J 2,j Jc-j Ui.[R+A*A.1-JUI ds

1 'c+J0 K AU d

- 2+j 1* U) ds
= 0 J U  T D

J00 F.F ds

= fo dt >0 
(08)

An interesting observation now can be made regarding the domains of

existence when the open-loop plant is unstable. D = (s - 2) requires

a < -2, and therefore there is no common strip of convergence. At this

point two options are available. The admissible U1 can be restricted so

that UI/D has a comnon strip of convergence with UI1 iD , insuring that

Eq. 18 is both positive and finite. On the other hand, the only real issue

is whether or not the second variation is positive. Thus, there is no need

to restrict UI if one is willing to accept a positive, if unbounded, second

variation.

TR-1125-1 10
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B. SIMPLIFIED W-H CONIDITIONS

It is not necessary to work with the complete W-H description as given

in E4. 6. Equation 6 can be reduced to two computationally simpler require-

ments.

Since

det[R + A.QA] e (D)P I A (19)

let

U0 = (20)

where t(s) is an unknown polynomial matrix. Further, describe the plant

matrices, A and B, in terms of the open-loop poles and their adjoint
matrices. That is,

Aa Ba
A , B = - , D = Open-loop poles (21)

The W-H equation becomes:

LRD- + AaQa] (s) + [AaQa]x(O)
: (22)

From the previous discussion it is clear that each and every numerator of

must contain D and A. Therefore, each numerator of * must be zero for those
values of s such that D = A = 0. (The poles of D may be located anywhere in

the s plane. It is the fact that they exist in some half plane for which
a > al which "tags" the roots of D as giving rise to positive time functions.)

When D = 0, Eq. 22 reduces to

A:Q[Aat(s) + &Bax(o)] = 0 (23)

TR-1125-1 11
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Since AaQ is already analytic in some left half plane, it need not be

considered. Thus, we have a first W-H condition.

1st W-H Condition:

Aak(s) + Bax(o) = 0 , D 0 (24)

Next, let A = 0 in Eq. 22 and obtain the second W-H condition:

2nd W-H condition:

[RD + AaQAa]t(s) = 0 , = 0 (25)

Notice that the first W-H condition persists even in the limiting case

of Q -i-0. Furthermore, even though Eqs. 24 and 25 are matrix equations,

it usually suffices to pick only one component of each since Eq. 19 assures

linear dependence when D = 6 = 0. For example, using the first component

of Eq. 24 will produce the same linear set of equations, in terms of the

unknown entires of t(s), as will the second (or third) component of Eq. 24.

Finally, note that nowhere does R-I appear in the W-H conditions - a fact

that makes the direct solution method ideal for the evaluation of singular

cases. A three-state, two-control-point example will be used to clarify the

mathematical details.

Let 0 1 0] 0 1
-- = 1 5 x + -4 2 u (26a)

T 0 -1 1 0

TR-1125-1 12
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(s+ )

s(-4s+ 1) s(28-3)
s 2 -s+ 1 s

X = AU + Bx(O) = U(s)
s(s 2 + 4)

S21 s+ 1 5

-g5s s(s+ i) 58
8-I 1 82-s+5

+ 4) x(o) (26b)

Suppose

= ] . 0 (27)0 30 -705

so that R < 0, Q does not exist. This is a so-called "cheap control prob-
lem," since there is no weight on the first controller. A routine but tedious

computation gives:

70584 +2209s2 I 32933+ 56482

+611 +846s+611

-329s3 + 564s2 1 3os 6 + 146s 4
1 (28)

-846s + 611 I -37s2+611
R +AQA = - DD , D = s(s 2 +4)

Evaluating the determinant of R + A.QA we find

det[R + A.QA] c s2 + 2s+2 = (s+) 2 +(I) 2  = (29

*Read the symbol cc as "contains the factor".

TR-1125-1 13
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Since there is no weight on U1 , we find that the order of the closed-loop

system has been reduced by one. In order to force both D and A to cancel

into * now requires only 5 unknown coefficients rather than 6 (D is third

order, A is second order). Let

+ ~ 
2 ][a bls +b2

U0  2 + x(0) wx(0) (30)i 82 + 2s+ 2

The "burden" of the extra coefficient is assumed by the first controller,

which has been excluded from the performance index. The feedback gains from

X to U will be infinite, since U is not proper-rational. Consider the W-H

condition; only one component of each matrix need be considered. Evaluate

the first W-H condition for D = 0 and obtain three equations in the five

unknowns. Then evaluate the second W-H condition to get two equations in

the five unknowns (for complex roots equate real to real and imaginary to

imaginary).

Ist W-H Condition:

(-4s+1)(aos2 +als+a 2 )+(8
2 +2s+1)(bls+b 2 )

= -A[s 2 -1 +1 5 x(0) (31)

s=0,+2J (D 0)

2nd W-H Condition:

(705S 4 + 22092 + 61 1)(a 0 82 + als +a2 )

+ (3298 +564s 2 +8 4 6s+61 1 )(b l s+b 2 ) = 0 (32)

S= -1 +j (A 0=o)

TR-1125-1 14
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We obtain five equations in five unknowns:

S=2j,Real -4 16 1 -8 -3 ao

s = 2j, Imag 32 2 -8 -6 4 a1

s=O 0 0 1 0 1 a2

S =-1 +J, Real -8836 6627 -2209 -799 423 bl

s =-1 + J Imaj 4418 2209 -4418 47 376 _b2

-10 10 10

20 0 -20

= 2 -2 -10 x(O) (33a)

0 0 0

0 0 0

The solution is:

-136 -18 -327

-425 -.60 -750

-289 -87 -858

8o -799 -282 -1128 x1(o)

al 799 -423 -1692

- x2(0) (33b)
bj 255

b 2  A )

TR-1125-1 15
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Placing Eq. 33b in the U =Wx(O) format gives:

U W(S) X(O)

-136s2 - 425s 1- 1882 -60s -327.S2 -750s

-2891I -87 -5

1 -7998+ 799 --282S-423 -i i28s -1692
255 (32+28+2) x0

(34)

There will be three infinite feedback gains (refer to Eq. 11) since the

first controller is not proper rational.

255 [19 282 1128 J urn

Note that the first controller gains go to infinity, at a rate determined by

the ratios of the entries of the first row. Even though the gains are

infinite, the closed-loop transfer fuinctions are readily computed:

X =[B +AWI X(0)E255(s+ 1) j45  160

544 -iog 327,e+423 10s+69

136a- 34 -18s-142 -72:1681 X(O

255(S2 +281+2) X() (6

TR- 1125-1 1
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The first W-H condition guarantees that D, the open-loop poles, cancel into

each numerator of [B + AW].

This exanple has been carried through in careful detail and demonstrates

all facets of the direct approach. Other examples, which demonstrate the

"budlleted" items in the abstract, are synopsized in the appendix. These

examples further demonstrate that the direct solution method continues to

work, without need for modification, regardless of the form of R and Q.

TR-1125-1 17
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SECTION III

W-H-PF po)m3LATIoN - OPwIMAL LINEAR STOCHASTIC OONTROL

The open-loop plant equation is modified by the addition of a process

noise vector n and an output equation:

= Fx + Gu + n , x(0) = x

(37)
y = Ix+v

The transform of Eq. 37 is:

X(s) = [Is - F] -GU(s) + [Is - F]- [N + x0 1

= A(s)U(s) + B(s)[N(s) + xo] (38)

The block diagram of the open-loop plant is shown in Fig. 3.

The time domain formulation of the linear optimal stochastic control

problem is given in Fig. 4 (Ref. 6) and the equivalent frequency domain

formulation is given in Fig. 5.

N + x ° 
o_ _ -

V

Figure 3. Block Diagram for the Plant and Measurements

TR-1125-1 18
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Open Loop Plant - Optimal
and Sensors t Controllerv/

Xo -(0) H Kalman

Deterministic
Feedback
Controller

Figure 4. Time Domain Formulation of the Linear Optimal
Stochastic Control Problem

Open Loop Plant

N~xo nd SesorsController

A x ]K Filter

U I - Deterministic

Feedback
Controller

Figure 5. Frequency Domain Formulation of the Linear
Optimal Stochastic Control Problem

TR-1125-1 19



A svpmrabi I I It~y pr~t ie Ipie foriii-lit ioln In I;' I-r:-. t lwwd. 'I'llt. In ip t K1I

inatar x represvint..; Hte rguhIter gai in, mid( no0w th t.:t::k i:; It Cl ind lhe

Ka nIfti I'iI ter galiin: K:,. PhI:Will b(- dli' by Iili in lP -ile UIC- l t-. lelil:tt

e rro r be t-weei thelf st-lt-e veettor X aund it.:: ; c. tIllu. Iey L:. ig 11,Pg. , ;t)I te

f'or 1. mid write Ill,.:

x~l Il 1~ l -1 KAp1- K-ip 0o

andt wr itt, thelt vrror :w,

- x will v I 11( J x,, P[N ix()1 0.

l'orniify Vjl M~idtl Ikingy thei' ga,li'.il. wiII rt.h-ziot (.o W,., give:; the W-1I

e~qun I. i n (.w Not%' l .i or tre I'te to Appe'ndix 0):

Wher to v 1:e. Ut. the po SI~:: nof ::e. ihe a. ul-o i on lolw f'ult'rt Ia q- N the

wasi un:et in mtiriv itig tit. Eq. 4I ', It 1 hoi igli thet nilore genlera I emwe i.- :: n:: IIy

t-rented . irt.henore, X(O ) and R(o ) hnve beenl ::et equla.1 t-o -.- ?o Ill Order

tLo tifinpiIlly te proetnt.n(Jion. To componitito Ior thl s htort.oomilng, S0 I till

of' the output regiuititor problem, vin W -11, is given in Appenix 1).

x il W 1 0 f-1K,31141I Coll - AU -1IN i x.1 ; A Ilk

WaY + BII 4 K,,u131 I - I - K: J11(it - P'IN # *

W~jY - Wtj[Al -1F -4 x.0 I

wij v 0 *l( xo] # HAIl - HMOl - Bf N i xo1

x - x wit [V 4 IMN x - It[N 4 Xc0 1

TR- I 1;""i- I



ONR-CR215-260-1

Observe that now the unknown of the W-H equation, Wa, is postmultiplied

by a spectral matrix which we will term the filter/observer spectral matrix.

Equation 42 can be solved, using the direct solution method, in exactly the

same manner as the regulator problem of the previous section. Moreover,

once Wa is found, the K2 feedforward matrix can be computed using

K2  = B--1Wa[I - HWa] - I

A simpler result is obtainable, if one considers the properties of Wa as a

solution to a W-H equation. Rewrite Eq. 43 as

K2 [I - HWa  = [Is - F]Wa (44)

and observe that, when Wa is a proper rational function, one can find K2

directly by letting s -a-o.

lim sWa)
K2 = s --ft Wa(s)

One cannot use Eq. 45 in the singular cases which occur when some or all

of the measurement noise components are zero. In this event, (I - HWa)

is singular.

Once either K2 or Wa is known, the controller to measurable output

transfer functions can be computed using (refer to Fig. 5):

U = -KI [I + (I - WaH)AKI]- IWaY (46)

X = WaY - B[I + K2JB]-'GK X

or A-

X = (I + B (I + KHB) GKi] WaY

= [I + AK1 - BGK1 + B(I + HB) - 1 GKI] - 1 WaY

= [I + AK, - B(I + K2HB)-I(I + K2 HB - I)GK1 - WaY

[I + AK -WaHAK 1 ]WaY

TR-1125-1 21
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~Or
U = -K 1 [Is - F + GK1 + K2 H]1  K2 Y 

(47)

Clearly, Eq. 46 persists even when the feedforward gain matrix K2 is singular.

Equation 46 gives an interesting limiting form. Suppose (PVV -0 (no

measurement noise) and H is invertable. Then Wa = HI  satisfies Eq. 42.

But Wa  = U = -K1 HY . (48)

The following illustrative example clarifies the mathematical details.

A. ILLSTRATIVE EAME, qrV' / 0

Suppose the open-loop plant is described by

0 1 0 0 1 n

1 5 x + 4[ 2 u + [ (49)

1 0 -1 1 0Ln3

and Y = HX + V, giving

E- 4 s + 1  1 s2 +2s + l-1

S(-4S+I) : s(2s-3)

X AU + B[N +x(O)] = 82-8+ 14+1 [ ]
2-1 + 5 (50)

85 (4+i1) of 58

+ ' N x(O)]

K TR-1125-1 22
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Let 11
R -1 2 (51)

1 0 5 2 18 (51

First, solve for the regulator gains; call this matrix KI. Using the direct

methods of the previous section, the solution of the regulator W-H equation

gives

ES2+4s+9 0 2,92-2 1
2s2 +3s+9 s2 + 5s+6 6s2 +7s+32

Uo0  wx(o) = - x(o) (52)
(s+ 1)(s+2)(s+3)

Application of the initial value theorem gives the feedback gains as

1 0 2

K, = (53)

2 1 6

Further, the matrix of "regulator" closed-loop transfer functions is computed

as

X = [B + AWIx(O)

(8+1)(s+3) 0 -6(s + ) 1
--5(s+3) (s+2)(s+3) s+32

0 0 (s+l)(s+2), (o) (54)
(S+ 1)(S+2)(S+3)

To differentiate between the regulator poles and filter/observer poles,

let the regulator poles be

= (s + 1)(S + 2)(s + 3) (55)
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The second step is to find the Wiener filter Wa, which is tantamount to
specifying the Kalman gains, K2 . The filter portion of the problem has
the W-H equation

Wa[ , + HBcP ,  ], B*H - BH = * (56)

For demonstration purposes, assume only one output measurement. Let

Y = HX + V , H = LI, 0, 0] (57)

and also let the noise sources be described by the intensities

V = , T'= [ 160 ] (58)
0 o 505

A straightforward computation gives

q)- +HB ,B*H (59)
c , + HBq,B.H. = -(9

DD

where (specifying A2 as the filter poles)

6 - (s + 4)(s+5)(s+ 6)
(60)

= -S + 152 - 74s + 120

Also, one finds

[ 85 1 - 1860s2 + 14,400

-2115 3 + 14,7hOs

85g3 + 2440S2 - 4300s + 14,1400Bcj' B. = (61)
DD

TR-1125-1 24
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The W-H equation has the form

a0 82 + als+ a 2 1
b0 s2  bls +b 2
CoS2 +cls+c 2 _ X z2

DD

L 8 5 8 4 - 18 60
2 + 14,400 1

-2115s3 + 14, 740s

85s3 + 24h0s 2 - 4300s + 1 4, _,00
______________=__ - , (62)

DD

Since each component of i must contain D, the open-loop roots, we require

nine unknown coefficients to force the cancellation. Of course, each

component can be treated separately, so that the basic problem is solving

three equations for three unknowns, rather than nine equations for nine

unknowns. Letting s = 0,2j gives these equations; for example,

(aOs2 + als + a2) ls=0,2 j

85s4- 186os2 + 141,oo
-s3 + 15s2 - 74s + 120-S ls=O, 2j

The final result is [15s2 + 708 + 1201
70s2 + 60s

13B2 + 2s + 120 (63)Wa (3

Rs+2)+ )(s+ 5)
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Finding the Kalman gains is now a simple task, sincel[i,
Yi2 sWa(S) = 70 (64)

13

Once either Wa or K2 is known, the input/output transfer functions can be

computed using Eqs. 46 or 47.

LuIs2 + 6Os + 19 ]
178s2 + 486s + 701

U = - Y

s3 + 21s 2 - 7's - 27

41s + 19
s2 + 20s- 27

178.2 + 486s + 701

(a + 1)(S
2 + 20s - 27)

It comes as no surprise that the transfer functions describing the input/

output relationships between the controllers and measurable outputs may well

be unstable, as they are in this example.

Singular cases can also be treated using the direct method since Eqs. 42

and 46 can always be solved.

B. SOLUTION WITHOUT THE SEPARABILITY PRINCIPLE

The linear stochastic optimal control problem can be solved without

making use of the separability principle. This can be very useful when:

* The regulator part of the solution is singular
(K1 ". c) .
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0 It is desirable to reduce the computational burden
(e.g., if one has a very high order system but only
a few measurable outputs and controllers, it is more
reasonable to compute a few transfer functions than
attempt to estimate a large number of states).

We may proceed according to Fig. 6.

In Fig. 6 we desire to minimize the performance index

=2 fc.j:O (x~Qx + U*RU) ds (66)

where ( denotes the expected value of (.).

First, form the integrand of the performance index

= x*QX + URU (67)

using the equations (refer to Fig. 6)

U = -[I+WHA] - I W[V+ HBN] (68)

X = BN+AU = BN-A[I+WHA] - I W[V+ HBN  (69)

Note, from Eq. 68, that the closed-loop stability is determined by

Wa = -[I+WHA] I W * (70)

*The W matrix of Fig. 6 and, for example, Eq. 70, is not the W matrix
of the regulator equation U = Wx(O).
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Figure 6. Direct Solution of the Linear Stochastic
Optimal Control Problem*

Thus, we can minimize Eq. 66 with respect to Wa and assure closed-loop

stability. The W-H equation becomes (using the variational method of

Ref. 3 or see Appendix C).

[R + A*QA]Wa[ p-, + H B q,-N,B*H.] (71)

+ A.Q B pNN,B.H =

for the special case where N and V are independent. Therefore, solve the W-H

equation for Wa and compute W using Eq. 70, i.e.,

W = -WaI+ HAWa -1  (72)

The separability principle is still very much in evidence in Eq. 71, since

[R + A*QA] determines that group of closed-loop poles which correspond to

the optimal regulator solution, while +, +Hq_, (f +)' determines the

*The W matrix of Fig. 6 and, for example, Eq. 70, is not the W matrix

of the regulator equation U - Wx(O).
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remaining closed-loop poles which correspond to the optimal filter/observer

solution. Equation 71 can also be solved using the algebraic methods pre-

viously discussed.*

Application of this approach gives the direct relationship of the

controller to the output since

U = (73)

An effect of formulating the problem in this way can be a dramatic reduc-

tion in dimensionality of the problem solution. Application to the illus-

trative example given in the previous subsection yields the exact same

transfer function W with less numerical detail (i.e., the solution is the

same as Eq. 6..)

*In addition, a spectral factorization algorithm is given in Appendix B.
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SECTION IV

THE OPTIMUM COUPLER PROBLEM

The prime objective of the research effort reported herein was to

develop an optimal closed-loop solution for direct digital control of con-

tinuous plants using a continuous cost function. As noted in the introduc-

tion, the solution consists of two parts - an optimal discrete control law

and the optimal (continuous) data holds. We have elected to proceed with

the development by extending the second method of the previous section in

a manner which accounts for sampled output signals which are to be processed

by a digital computer and outputted through a data hold (coupler) to the

control actuators. In the case of the continuous filter/observer problem

two spectral matrices came into play; the matrix which pre-multiplied the

unknown of the W-H equation was recognized as the regulator spectral matrix,

whereas the post-multiplier was recognized as the filter/observer spectral

matrix. Both were, in the illustrative example, rational functions of s.

In the W-H equation for the optimum coupler case, it will be seen that the

pre-multiplier remains a function of s while the post-multiplier becomes a
sT

function of the delay operator z = e

The situation of interest is depicted in Fig. 7. For brevity, N + x(O)

is taken as N. That is, the initial condition input vector will be suppressed.

B V

DATAI
HOLD ./_

Figure 7. Linear Stochastic Optimal Discrete Control
of a Continuous Plant
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Let the integrand of the performance index, call it 0, be the expected value

of the usual quadratic index:

*= X*QX + URU (74)

First develop expressions for the continuous X and U (the superscript T

will be used to denote that a signal is impulse sampled at 1/T samples/

second; a slash will be used to denote the transpose):

T = -M[I + wT(HAM)T]-IwT[v+HB]T (75)

X = -AM[I + wT(HAM)T]-IwT[v + HBN] T + BN (76)

We choose to optimize with respect to the matrix of transfer functions

between [V + HBN]T and UT; therefore, let

WT = -[I + WT(HAM)T]- 1 WT (77)

and define

SM V + HBN (78)

t 2 4 BN (79)

so that Eqs. 75 and 76 become

TtT

U a 1 (80)

X = AMWT T + (8)al 2

Substituting Eqs. 80 and 81 into Eq. 74 gives the integrand of the perfor-

mance index

= [glWa.M.] RIY~[t~~ T T RTETA

[2. + tITWT.M A] Q[AMT-EI + t (82)
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Next, take the gradient of Eq. 82 with respect to the unknowns MWa, take

the expectation and arrive at the W-H equation:

t~tT +(83)
[R + A*QA]!'(~~) A~p( ) ws (85)

Assuming V and N to be independent noise processes gives (see Fig. 8):

CPTrP =± IcP"V + HBcq.,BJi*JT (84i)

= - T + (H - 4H*)T] (85)

The I/T scale factor is in keeping with the definitions given in Chapter 10

of Ref. 7.* In a like manner, the cross spectra between the sampled vector

IT and the continuous vector t2 is simply 
the scaled continuous spectra

(Ref. 7):

1g B '--,B*H* (86)

V

4T

Figure 8. Spectral Noise Model

*The use of 1/T in Ref. 7 appears to be a "matter of convenience."

Other reference sources (e.g., Ref. 8) do not use it.
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The W-H equation now takes the form

T (IB T, H)T I

[R + A~qA] MWa +w + ±(IBc ,B*,H*)T

+ - A*Q3cp.BH. = (87)

A. SUMAY OF OPTIMAL COUPLER PROBLEM

Given the digitally controlled continuous system of Fig. 9, the W-H

equation, resulting from minimizing the expected value of a quadratic index,

is:

[T 1(H .BH.)Tl

A.Q)cN, B.H.

+ = (88)T

where WT is defined as

WT  -I + WT(HAM)T]- 1 WT (89)

uTV 

Y
DATA
HOLD

T T

Figure 9. Linear Stochastic Optimal Discrete
Control of a Continuous Plant
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Let
T

qii

GG* = -- + HBq 
, B H )T

TT

-2  + - 1 2 + T

T I T (=-9s

I1 15 1 1 Or')

The power spectra of sampled white noise has been taken as 1/T2 rather than

I/T (see Ref. 7 for a discussion). Continuing, we find

S1 z_ z

GG* + z

Tr2  2 T z ze-T z - eTJ

=5 z(e-Te T)
T2  + zeT)0(z-e

T2 (-e T) (z Te)T )

BT - TT
=T2  ( - -)( -- T)

Thus, the optimal filter/observer pole is defined by z e-BT the Value

of B as, a funotion of T is given in Table I
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TABLE 1

T B

0 4.

0.01 3.9998

0.1 3.9769
1. 3.0285

The only remaining computation is

1 120

-A.QB"l ,BH * = (98)
T * T(-,s +1) 2 (5+ 1)

The W-H equation is therefore

8+3)(S+3 T(z eT)(zeBT)
(-a + 1) M 2 JrT

120 = (99)

T(-i+ 1)2(s I)

The application of the direct approach requires that ibjT be such that the

nmerator of * cancels all those poles which can produce positive time
-T

functions - that is, cancel the terms s + 1 and z - e . A selection

of

MTaO(z - e -) 0100)

a (s + 3)(z-e-T)
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where aO is an undetermined coefficient, is sufficient to achieve this goal.

Substitution of Eq. 100 into Eq. 99 gives

(-s+3)(s+3) a(zeT
(--B+1)(S +1) (aS+3)(z -e - B T )

X (z-_-BT)(z- BT) + 120T (101)

(z-e-)(z-e ) (-3+I)2 (S+ 1)

or

(-s + I)(-s + 3)aO(z-e T ) +120T(z-eT (102)

(-B+ 1)2(8s+ 1)(z-e T )

In Eq. 102, a0 must be selected so that the numerator is zero when s = -;

therefore,

_ 120T(eT-e) = 15T (1-e2T

2(4) (e' _ eBT) - 1 e 1+BT (103)

For example, when T = 1 sec,

WT  =-. 7 3 69 2 9 3 33 (z-e - T)
(s + 3)(z-e -BT)

Notice the general result. The data-hold poles are defined by the (con-

tinuous) regulator spectral matrix, while the "discrete" poles of WT are

determined by the sampled filter/observer spectral matrix. Letting

M WT aO(z-eT) (105)

8+ (ze-BT)
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one then proceeds to compute the digital control law using the equation

WT -wT[I + (HA)TwT] - I  (106)

First,

- I [) Z T - i:I+T]]

- -T -T

1 (e-e (107)

2 (z-e - )( e- 3T)

Therefore,

(H)ITWT (e-T e-3T)z. ao ( _&-e

a = 2 ( (z _ -3T) (ze-BT)

and

I + (+ )Tw1

z2 e- 3T + eBT _ !2(e ' T -e - 3T) _ } -(,+B)T
2

(z - J3T) (z _ e- BT)

(z - e--T z T) (108)

- (z-e T)(z-e _BT , c = 2+B (108)

That is, as a consequence of the W-H process, the numerator of I + (HAM)TwT

contains the "open-loop root," z -
e , as an exact factor. Therefore,
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WT -ao(z-e--e) (Z-j-T)(z-_ e-BT)-- T -T

z-e - (z-e"T )(z-e)

-o._e-3T)
= -a 0 (z -e-) (109)

It is interesting to note that the output equation

U = -MWTyT (110)

can be written as

e_ _ _ _ -T83 03

s+3 I

M WT

=-MW yT ( 111 )

That is, the data hold can be viewed in a manner quite similar to the zero

order hold (see Fig. 10). It is now apparent that the optimal coupler

solution defines a data hold which forces the plant to follow a path, during

the intersample period, that is in a sense "scheduled" by the continuous

constraints placed on the solution by the (continuous) spectral matrix

R + A*QA.
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Optimal Coupler
Impulse Response

Zero -Order Hold
Impulse Response

h(t)

T

Figure 10. Impulse Response of Zero-Order Hold
and Optimal Coupler

The example has focused on the numerical details of solving the W-H

equation when the regulator spectral matrix is a function of s and the

filter/observer spectral matrix is a function of z. In the next section

we treat a "limiting form" problem in order to focus on the properties of

the optimal coupler (in distinction to W-H solution techniques).

C. THE OPTIMAL MMUIATOR/COUPLER PROBLEM

We return now to the notation of Section II and treat the optimal

coupler for the special case where N and V are zero - the only excitation

being the initial conditions. Recall, for the optimal regulator the

Wiener-Hopf approach solves for the optimal controller. Therefore, it

does not distinguish between the two configurations shown in Fig. 11.

Given a performance index for which the integrand is

= X.QX + U.RU (112)
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the W-H equation is

[R + A.QA)U + A*QBx(O) = (113)

and the solution is

Uo  = W(s)x(o) (114)

For the configuration of Fig. 11a, the compensation is

K = -W[B +AWF (115)

-11

-K -

(a) (b,)

Figure 11. Analog vs. Digital Controller
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Whereas for Fig. 11b the compensation and data holds are defined by:

NJ = -WI[B + AW]TV -l  (116)

If a discrete index is used,

4) = XT XT + UTRUT (117)

then the W-H equation is (M given)

FR + (AM)TQ(AM) T]UT + (AM)TQBT (o) = (118)

The solution is

UT = wTx(o) (119)

The gains can be found with the (z-domain) initial value theorem.

Clearly, for a problem formulation which is as simple as the regulator,

the use of a continuous index forces the same smooth continuous motions

in the state and controller deflections for the discretely controlled case

as it does for the analog controller. The situation is not nearly as simple

to predict when the discrete index is used, because the migration of z-plane

"zeros, as a function of q and r, is usually not very transparent.

We will solve the W-H equations and give transient responses to demon-

strate these points. Specifically, three cases are considered:

1) Continuous index, continuous controller.

2) Continuous index, discrete controller, data holds
specified by W-H solution.

3) Discrete index, discrete controller, data holds
specified a priori.
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OPEN-LO0P PLA61T

Let

L = .[ x ]] u (120)
-4 4 5

so that 
s+11 

[s-4 11

5s+1 -4 s+l
X(s) U + x(0) AU + Bx(0) (121)

s(s -3) s(s -3)

Suppose

R = 1 (a scalar) , = _ (122)

R+A = (s2+1.2s+.2)(s 2 - 1.2s-.2) (123)

S+s(s-3)(-s)(-s-3) DD

Since there is only one controller, exercising the first 
W-H condition

gives

U = W(s)X() - [.8(s+ 1) -(s + .2)] x(O)
2 + 1.2s + .2

.8 1 -.. ~x(O)

s+.2 8+'1 ] (124)
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The matrix of closed-loop transfer functions is:

s-4 1 8 + 1

X =[B +AW]x(O) ={ 2 : ]+ [ ;:'(s+.
s(s- 3) s(s- 3) s.2 + x

S + .2 ] x(O) (123)

1
s+l

The feedback gains can be computed using either the initial value theorem

or Eq. 115:

[-.8 :1 ] (126)

As noted previously, Case 2 must have the same W-H equation, and therefore

the same solution:

r "8 i -1 1xO
Uo  = W(s)x(O) s -x(O) (127)

The compensation (data holds and gains) is defined by Eq. 116:

r=zW[B , .- ~ &2T 0 ]

W9 .:-I[B+AW]T 1 I -. 2

-T(1

S+.2 I 8+1
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That is,

M [ e -T(s+2) I1-e -(+l) KT [
S+ .2 I S+ I'=M I (129)

One may verify, by direct substitution of Eq. 127, that

U = _MrI+KT(AM)T]-l KTBTx(O) = W(S)X(O)

and therefore

X = (B + AW) x(O)

Next, it is a straightforward exercise in discrete regulator theory to

obtain the Case 3 result Fq's and r's were used which forced (z - eT )(z - _ 2T)

as the closed-loop poles]. The gains that achieve this, as a function of the

frame time T, are given in Table 2 (u = -KXT = -[KI K2][Xl x2 ]T).

TABLE 2

T= .1 T= .5 T= 1

K1 -. 792556055 -. 771538772 -. 758184683

K2 .954136595 .836065309 .776195811

The discrete controller deflections, as a function of x(O), can be computed

using

UT = -rI +K(AM)T] - I KBT x(O) (132)

and the continuous state motions using

X = Bx(O) + AMUT (133)
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(In computing Eq. 133 it is best to carry the analysis to a point where

the strongly unstable open-loop root has been cancelled out.) The tran-

sient responses, for T = 1, x 1(O) = 1, x2(0) = 4 are shown in Fig. 12.

Note the poor transient response of the system designed with discrete

regulator theory. Whereas the continuous design was "decoupled" as fax as

the initial condition response (each state containing only one mode), the

discrete design forced the correct poles, but the zeros go where they will.

This can be verified by checking the XT closed-loop transfer functions:

[z -.36991217 .0365270
.024976780 z -. 816698oi xj(O)

xT Z-.2T ) e X 2(0j (134)

1.2

X cont= e

1.0

.8 - Optimal (discrete index)
Response

.6 .6 -T =1.0

4 Cont. and Optimal
Coupler Response

.2

0 I 2 3 4 5 6 7
t(sec)

Figure 12. Comparison of Transient Responses
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To summarize, the optimal coupler solution forces the same initial condi-

tion response as associated with the continuous regulator design. The discret

regulator design exhibits undesirable inter-sample response. Indeed, with

only two gains, the closed loop poles can be specified but the zeroes go

where they will - resulting in a design which cannot even match the continu-

ous response at the sampling instants.
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SECTION V

A new class of problem Is sol-ed using the W-11 tippronoli, The prob Iein

treats the ease of a contimiou.; ;kvrforrinev intlhx, together with ,I e-ot-

t. ituous plant and -,unled metwurciiis t-o ;pvc il) b~othI thei opt imaiI (dli ;ret e)

digi tanl control. la and the optimal ( ont imen... Lits lho 1d, to bo 1l:wed 1,01,

('olpA Aug the dig it'a I colit-roA- lawd to t,1e p Ifl1t. 0Otuto1''h'ot.!AII coup Ic r

oroliestrates an intoer-oamnp~t control .1or rt'0oi dei di g t'o -on oki loop)

sys til. whichl vxlibit, lsa'tr .Ie:mre. iorIo t hI r I:cre

regi. tor t-outiterpart-,

vhere, a re se-vorn'l ilxritait. o 1 ro ilt., ta Iwo.' iii witich di.rect dilgItal t o:;AIgii

wi th rvpl'c t, to :a contintiiou.; cont, ftikt ionl is- c mc Ia It CO (Itf Ic I o Mi. a 'd sc-

cts w~Ii syt'les is of' di gitaLl cotrol 1 lw-t Thoset kA1rknwwt.-uwte.'- re:

* Existing systens Vor which the, l imit i o ore
word lotigth, tnmd compitat.Aoi opted Ilav-, boes
reached (tfor exatinple, V/ ,IIOIANP)).

*Aplication whiere out''' lo lx7 ae updated at,

inhevrently slow [' ~e Ow example1t, ~ ~Jmu;
NkAAs remotely Pilo0ted r-O.sarchil x'ehi.10ol ( HI'HVO

" Appl.ication~s wherein the ost of a fast. iinikcompiter
in niot. Jlustilfiable but. a ml croprocessor I., cost.
eff'ective (for example, general savlst.on, digital
conitrollers for missiles,, RPV's tind othier -smatt,,
expendiable wenpons ).

" Application o1f low kinta ratt, ttehIoliqe. for renxi -

time simulation problemsn.

InI additionp the dvvelopment.s of' Section.; IT ndk 111 make ci oar the~ uzl-

fons manner in whicoh the direct so.~t.iton mnethod trents singular problems,

TWat in, no modi fiention is reqldred t~o solve vnso05 flor wil clx sotte (or -II)

of' the f'eedbnck regulator gains or sione (or ti]l) of' the ifeedforward gain~s

of the filter/observer go to inrinityv.
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Furthermore, the examples of Appendix A demonstrate:

* The R weighting matrix need not be positive definite
nor is it necessary that R- exists. Q can be . 0.

* Singular regulator and filter/observer problems (e.g.,
the cheap control problem) can be handled neatly.

* The weighting matrices, R and Q, can be explicit func-
tions of frequency.

* There are advantages in using non-diagonal Q and R
matrices.
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APPlXf A

ILLUSTRATIVE REGULATOR EXAMPLES

Illustrative regulator examples, designed to demonstrate the "bulleted"

items of the abstract, are synopsized in this appendix. In general, we list:

" The open loop plant; k = Fx + Gu

" The transform of the open-loop plant; x = AU + Bx(O)

" The weighing matrices; R, Q

" Wiener-Hopf equation and the assumed form for the
optimal control

" First W-H condition

* Second W-H condition

* Solution for the unknowns of Uo

* Optimal control gains

" Matrix of closed-loop transfer functions

TR- 1125-1 A-i



SECOND-ORDEF, TWO-CONTROLLER REGULATOR EM APLE

Observation

Choice of Q,R excludes feedback from second state

Open-Loop Plant [~ ] [X(s) U [:!+4 s2]s [ (s})(.•

Weighting .atrices

R= [7 [23/9 7/ det[F.,AfAI ZZ0 1-7/9 0 s 3( (- . ,

W-'q Equation

[R+A,4 QA]U0 + A4.Bx(O) -a

Uo - Wx(o) U Lbs+ blJ

1st W-H Condition

(a-1)(os•+a) + (28-7)(boa+bl) = -- [s+3 a i]x(O) s = -, -

2nd W-H Condition

(.8~s -~2~ +3. )as a =- - 49s - 14)(boo -bl) =0 s -3,

Solution for UnJmowns

8 -2 6u -3 -63 s -2 - 8/9 0S - 2 -2 - 5 5 al -12 - al /24/9 -89
a -3 PI -7 -12 4 bo 0 bo _-I4/9 0

n =-4 28 -7 -16 4 b0 0 b L-42/9 -14/9

Optimal Control Gains

r_(8/9).-24/9 1 -8/91 Therefore,

r." ']_____ -49J x.,1 [ [.' '3/9 ,
U0 . W(S) x(O) - -- 1=) 4291-49] K =-SW(s) = /

( .- 3)(s+4) -2(0) 1•
"

. u i4/9

'.atrix of Closed-Loop Transfer Functions

(2; 1)(.+2) (A+ 1)(.+2) 9(s+3)(a+s4 ) (,+ Lx3)( -
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EXAMPLE - UNSTABE OPEN-LOOP PLANT, SINGLE CONTR':1LEE

Observat ions

1s;-H is dimensioned" by the controller, not the state; the single controller problem requires onlythe first W-11 condition.

We can keep = open-loop root as a closed-loop root if we so desire.

.c n be identically zero; the method continues to work without the need for modification.

,'pen-:.oo1 Planti a-12s-8) s 1

= I xX() (S)-s- u(S) K s-1 1 s* S X(0)
a0s -2 s s) -  s(s -2s* 1

Weighting .natri Ks

S0det[R +AA.QA] RDD ass-?

R > 0 A s(s2 2s+2)
aos2 a ils af[R+A.,A]Uo+A*,Bx(0) = Us = W. Co) Us

I st W'-H Condition (only one needed in the single controller case)

(-28 +I) (ao,2 +aIs + a2) = -6[(8_1) 2  a-1 -I3x(0) s= 0, 1 +

Solutions for Unknowns when D = 0 8 - 0

-- -1[a I ] [4 b 4 aio) 42 4

Optimal Control Gains

I[4s-16 12s-8 ', X(O)K-1%(

U s w ( S ) x ( 0 ) -,7 - - I2. 2 L i m s -

= 7 7- 5- Fa7
M.'atrix of Closed-Loop Transfer Functions

3s-1)2' -- 1 -1 -28 1

-- s(s- 1 ) -8 -,^2
2

X [ B + A ]x ( 0 ) 1 L - i s - s3 t , - s -  I [ 4 s - 1 6 - i - B 4 s - 1 , ]
s ( 8 2 - 2 8 . ) D ' ( :  ' ) X (

542 + 108-3 52-9 -13

-138 5s2-93 -13s ][

X:? __ 9s- 3 1284 9 ;,S2 . 
-9S 13 x",(o)

X3 !5s(s2 + 2s . ))x.3o

Note: If the open-loop plant had been stable, the selection of "=0 would result in a feedback
gain matrix K 0-.O
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EXAI.2LE - Q,R ,M Y BE FUICTIO',s OF FkQUi2CY

Observation

Lead/lag compensation

.(pen- -oop Fant

X = 
[x U J0 -1 X2 s(s. 1) ) S)

Weighting :.:atrices

_ =12 5 9det+AA = s*4)C(s. 2
7s-.34)

W-H Equation

R +A AU oA , CE0. (as
2

+als+ _) a (s, 9 )[ 9 7 3- "

A(2 -3)(-s 3)

-!!-H Bequirements

A = (B +4)s2' +3lmerator 0 when DO = 0, s -3

Solutions for Unknowns

a = 0 £ - -1 s -3a2 [-936 -936Jx(o) 9. 0 -3a 1 "a 2 = 0 -a,a,, = c -624.]x(c)

1 -3 1 31,
, -624 a = -

1248 -312
1 >-936 -936 a - 936 -936

Opti-.:al Control Co-pensation

U - Wxxo) [-(3128?.1248s+ 93r)]

S- (s+)(2+279+23) 
xO

ka +4)kSai+ 78~y~ +x23 ) X =W[ ~BAl-!]-
Matrix of Closed-Loon Transfer Functions

82+31s+30 8+ 30

x = [B.+t' x(0) - -31( s+ 3 8 s(30 x 0o1
(sa+4) (sZ+ "78+ 234~) Lx,,,

TR-1125-1 
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EXAMPLE- ONE "CHEAP" CONTROL

Open-Loop Plant r-48+ 1 (s+ 1)21 8s21 B+ 1 5]

s(-4 +1) 8(28 -3)1 -5 3(3+ 1)0 0[- x(,) = s2 -8+1 a+ 1 1- U + s- 2-3+* x(o)

0 U s(s2 +4) 8(32 + 4T

= Au + Bx(O)

Weighting Matrices

R . = O[ 0 det(R+A*A] cc s2+2s + = (s+ 1)2+ (1)2

1 0 30-705]

w-H Equation [1 2 als +

(R +AA]Uo+A.Qx(O) = U0 - Wx(O) Us bls + b2

8
2 
+ 2a + 2

Note: Place the ,burden" of the extra coefficient on the controller which is excluded from the
performance index.

1 at W-H Condition

(-4as+1)(aoS2
+als+a2 )+(9

2
+2.+1)(bls+b 2 ) - -6182-I B+1 5]x(O) a = 0, +2j

2nd W-H Condition

(70 ,
4

+220gs2+6t1)(ao&2+a 1 s+a,)+(329
3

+564s2+8,6+611)(bls+b2 ) = 0 a -- 1+J

Solution for Unknowns r136 - 18 - 327
-4"'25 - 6o -75

[ -4 16 1 -8 -3~ so" -10 10 10 r 1289 - 87- 85
32 2 -8 -6 4 a, 20 0 -2o a, -79 282 11o- j( 0i

-8836 6627 -2209 -799 423 b1  0 0 0 b, 255o 1I1a21 = 2-Q-1x(o) = a2 - -4,23-12

4418 2209 -.4418 47 376 b2  0 0 0

Optimal Control Gains

U - W(s) x(O)

136s2 -425s -289 I -18. 2 -60. -871 -327u2 - -858
, - - 4-- :- -: .- -I- 136k,18k. 37ko

1 -7998+799 -282s-423 ! -128s- 1692 J18 1= 2 5-5 X.(. . K 7 9 ")8 2 , ,1 s
+ 15 Lin

Note: The first controller gains go to infinity, at a rate determined by the ratios of the entries*

of the first row of the equation for K, above, right.

Matrix of Closed-Loop Transfer Functions

255(s+ 1) 45 180 1
544s8-1309 327s+423 13088+ 1692 x 1 (0)194J S-- I 7S +l&2) ) s+ I( x 0

X = (B + AW]x(O) = -136s-34 -18s-42 -72s-168 x2 (o)
255(62 + 2 +2) x3(0)
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EXAMPLE R 0, IWO "CIEAP" C0JTIR0LUP2S

Observation

W-H approach requiree no modification when R - 0.

Open-Loop Plat -48. I (a. I)] a'-! 5+ 5]

1 1 r0 (" (-4s 1) 8(28-.) a~ (.)
[I 1 5x -4 U x(e) - ,31. .J -i - (s)

o U(22+) s(s2. +)
- Au + Da(0)

Weighting M.trices

R 0 ] -3/2 0I det(R .A.%] c (a+ 1) 6 reducel by two

W-H !quation r ILIM &2~

(P.A.00J]' A*I (o) = , Uo - Wx(o) L bb

lit W-H Condition

(-.4841)(aIsia2)+(g 1) 2 (bja+b 2 ) = -<X 2 -i 0+1 : ,Ix(O) when a -0 , +2j

2nd W-t Condition
where

NA(ajls. )+%(bls..b) .0 NA - q,(_1682 + 1) q2 (.2)(-_16@2+1) +q(42+1 )

when i ND = ql (4'.3 + 9s. 6m + 1) + q2 (-8 4 + tO3 + 382) . q3 (0. + 2? + 2 1)

Solution for nnowns 
-is 9 10I1 2 - 1 0-,

16 1 -8 -3 a [ 5 3 -5] -1() 56 o x(o)
2 0-8 -6 14 10 -4 -10 __ 14 L_20,

II I ) j~o) I . .-,0-(,
I -Lbl 1 -1 -1 r ],T T-3 3 bp 0 0 0 b2  -3(0)

1 -i ) X(0) .L-awoj)

(0)-Li
1 + 14a~J 1155 -20 604 -80 :;(o) 1 1i88 go -10

Even though the gaim so to infinity, they must do so with the ratios defined by the equation for
K and the result will be a well-defined matrix of ciosed-loop transfer functions. We can, of
course, comute the result directly using X - ED .AW x(o).

MAtrix of Closed-Loop Transfer Functions

x -1,( ) 8 -+ 1 L 'l(, . )2 -. (+~l:- lo-o =oI 5 Ns2.. )1 5s 4.'.1) 8(2n1) 161;9s6:0
s8-i 1 -2..,+ -1 _. 6.1 75I6s +1 : 1a-_06.3 -.8o xo)

F-30 15 601
-40 20 80 X(0) The "reduced state" answer Is obtained

-1 9 36 I without the neoisaity of any limiting

-(a 1) /X2(0)/ procedure applied to the feedback gains.

[13(0)]
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I.PLICIT MODEL FOLLOWING

Observation

W-H approach requires no modification when the model is unstable.

y - Hx

x= Fx+Gu = X(s) = (Is-)-I GU+ (Is-F)-I x(O) = AU+Bx(O)

f - 'j L ] -[ -y£' I r e t CJ-

fE0 r"~L]uud = 1t fj L)YJ Z-((I. - L)YJ + U.RU ds

W-H Equation

[R +A.H.(Is-L)., (Is-L)HA]U+A.H.(Is-L).0.(Is-L)HBx(0) tie

Example 1

[•]x * [X ] u , H = I = x( s) = 2() - 1( 2 ( )
-- - [>X() Ti + 1 a+ 2) U(s+ 1)(S7.--.7x20

L = 0Is-L] = det(Is-L] = s2+s-12
Q - 1 2 - [-32 8+I-- ( ) -)

W-H Equation:

(s2--12)(s2+s-12) [o + ai] (8
2

-s-12)[-14s-38 S2+.-12)

(+4)(-3) D8 2 +

UO -Wx(O) - (+k)(s) x(O) Therefore, K = (-14 , -2]
(s+4)(-3)

X - (B +AWIx(O) - 1 x J- [is - LI 1 x(O) Check

(s+4)s-3)x2(0)J

Example 2

Same anExamuple1, except RO - 0I L =[

Therefore,

s.-2 1i
(Is-L = det[Is-L] = (s-l)(s-:)

0 s-

(-12 6s]
Uo = Wx(O) = -2 6(xo) =9- K= (0 --]

a -38+2

[s-, i] ri-i -l1

X - [B+AW]x(O) - J [is-l- = 0 a- B+AW2
- 8 +2 2 -38+ 2

Therefore,

Choice of = m natches only the poles.
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APPEDIX B

SOLUTION USING SPECTRAL FACTORIZATION

The regulator W-H equation is

[R + A.QA]U + A.QBx(O) - (B-l)

Since we may write

[R + A.QA] = [I + A.K']R[I + K = FRF (B-2)

one may verify, by direct substitution, that

Uo = -F 1 H 1 [F 1 1 A.QBx(O)]+ (B-3)

is a solution to Eq. B-I. This solution requires only that R 1 exist.

The Wiener-Hopf equation for the filter-observer problem is

[R +A.QA]Wa[q-, + IMN,B.H.] + A.QBqH . = (B-4)

Setting

q,-, + H3%, B.H* GG (B-5)

R + A.QA = F.RF (B-6)

A.QBq,B.H. = N (B-7)

gives the following form for Eq. B-4:

(F*RF)WaGG. + N = * (B-8)

TR-1 125-1 B-I
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By direct substitution, one may verify

1-1Il -+ -1 (B-9)
Wa =-F " R " [F 1 N*G.1  ] G

satisfies Eq. B-8. That is,

-F*[ r' NG 17' G -1 -1* 7"*(-0

F*I-[IN G71] + + FING *IG = F*{Fr*NG_*1G* (B-11)

Equation B-11 satisfies the W-H requirement of forcing to consist of

time functions which exist only for negative time.

TR-1125-1 B-2
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APPENDIX C

A VARIATIONAL METIHD FOR DERrI G W-H EqUATIONS

Suppose the integrand of the performance index (or a particular element

of the index) has the form

= X*L.} (C-i)

the first variation is found by taking the gradient with respect to H*:

vXH = :x[HY]' = X'(-s)Y'(-s)H'(s) (C-2)

Example 1:

From Section II, the regulator problem gave

0 = x.QX + U*RU (c-3)

with

X = AU + Bx(O) (C-4)

Therefore,

[U*A*+x'(O)B*j Q [AU + Bx(o)] + U*RU (C-5)

Taking the gradient with respect to U. gives:

= [A*]'[Q(AU + Bx(O)]' + (RU)' (C-6)

Take the transpose and write

[R + A.QA] Uo + A.QBx(O) w (C-7)

verifying Eq. 6.
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Example 2:

From Section III (see Eq. 41), since [setting x(O) = 01

E = X = Wa[V + MI -BN (C-8)

we write

= [(N.B.. + V*)Wa* - N*B*][E] (C-9)

Take the gradient with respect to Wa*:

VOa. = [N-,B.H*+ V. ]I [E] (C-10)

Choosing to work with the transpose gives

[Wa(V + RM) -BN][N*.B.94+ V* (C-11)

Expanding gives:

V = Wa[Vfl1fl* + W* + H B.B*H* + HLBNV]

-4NH( - BNV.-12)

The expectation operation on Eq. C-12 gives

Wa[,tB*H* + q. ,+ H13p ,B*H* + HBqg,]

-B c% ,B * { - Bq . W(c -13 )

TR-1125-1 C-2
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If V and N are independent, Eq. (C-13) reduces to

W"[ q W, + HBm,B*H* - ,B4, (C-14)

This verifies Eq. 42.

Example 3:

Equation 67,

' = X*QX + U*RU (C-15)

with

U = Wa[V + H3NI (c-16)

x -- AWa[V + HBNI + BN (c-17)

becomes

0 [N*B* + (N.*B*H* + V*)Wa*A*]Q[AWa(V + HBN) + BN]

[N*B*H* + v.j Wa*R Wa [V 4 HBN]

Therefore

[N*B*H* t V*I' ?[A*Q(AW,,(V + HBN) + BN)]'

(c-19)

+ [Rwa(V + HBN)j'

Again., we prefer to work with the transpose

TR- 12 '-1 C-3
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(V( .)a = A*.a(V + HER]+ A4. M + RWa[V + 1I [N*.. + v. (C-20)

[ [R + A.AAMa[V + Hi][NH S,, + V.. + A.QN(NB.Bo + V]

Given 0, then taking the expectation yields

[+ A*QA ]Wa [q)V- + KB ,Bj*+ A*QAp, Byli (C-22)

verifying Eq. 71.
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APPMWD3 D

TETPU t~!IM RULATOR

The system is linear and time invariant:

x=Fx + Gu

(D-1)
y = lx

Transforming Eq. fl-1 gives

-11

X = (Is - F] 1 GU + [I - F] X(0)

(D-2)
Y= HX

The block diagram, assuming a control law,

y = -KX (K may be frequency dependent)

is shown in Fig. D-I.

From Fig. D-I, write

U = -[I+KHA] - 1 KHBx(O) = WaHBx(O) (D-3)

-K

Figure D-I. Closed-Loop Configuration

TR-1125-1 D-1
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Minimizing the quadratic index,

fC= I (x*QX + U*RU) ds , X*, X'(-s) (D-4)

with respect to Wa gives the W-H equation as:

[R +A*QA]Wa(HB X(O) x'(O) B*H*) + A QBx(Q) x'(0) B*H* (D-5~)

Equation D-5 can be solved using the direct approach or spectral factoriza-

tion. Using the factorization approach, write Eq. D-5 as

[F*RF]Wa GG* + N =(D-6)

so that

Wa, F R [~ G] G (D-7)

F can be computed using the "full state", feedback regulator gains:

F I +KA (D-8)

for example:

-4 4 i :]x ~ j H=[1 0] (D-9)

Therefore,

58s + lE -.4;a+1] [ (o) (-10)

3) L- ) (0)~
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Let [8 01

R =1 Q](D-11)

so that

det[R + AQA] cc s 2 +1.2s +.2 = (s +.2) (s +1) (D-12)

Also note

22

_ x1(O)(-xsO)B*cL)= - t ) (
D D

Letting

x2 (0) - 4x1(O)

aL xi(o) (-1

gives

a (c+ 3. 2 ) [ 2

Wa (S (D 5

(a + 3. 2)[s+ .2cL1

K= IS a,+3. 2 (D-16)
S+ 1
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u;-(a +3.2) + ;-j. ( s-4 11]xo)(-7
UI m -32-X(O) (D-17)

s-4 1
(s +.2) (s +aT) (s +.2)CSi--+C7L) [x(0)1

I II-(a+2)S+(5+m) [X2(0)J(-)

Note that x I (0) 0 gives K = c.

Given perfect knowledge of xl(O), x2 (0), observe

(s - ))x(O) + x2(o) xI(O)
(s +.2(s +M) -

x -(D-19)

-(5,. + 20)x(o) + [s + (s + m)]x(o) x2(0)
(s + 1)(s + o,) s + .10
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